Chaperonin GroEL accelerates protofibril formation and decorates fibrils of the Het-s prion protein.

نویسندگان

  • Marielle A Wälti
  • Thomas Schmidt
  • Dylan T Murray
  • Huaibin Wang
  • Jenny E Hinshaw
  • G Marius Clore
چکیده

We have studied the interaction of the prototypical chaperonin GroEL with the prion domain of the Het-s protein using solution and solid-state NMR, electron and atomic force microscopies, and EPR. While GroEL accelerates Het-s protofibril formation by several orders of magnitude, the rate of appearance of fibrils is reduced. GroEL remains bound to Het-s throughout the aggregation process and densely decorates the fibrils at a regular spacing of ∼200 Å. GroEL binds to the Het-s fibrils via its apical domain located at the top of the large open ring. Thus, apo GroEL and bullet-shaped GroEL/GroES complexes in which only a single ring is capped by GroES interact with the Het-s fibrils; no evidence is seen for any interaction with football-shaped GroEL/GroES complexes in which both rings are capped by GroES. EPR spectroscopy shows that rotational motion of a nitroxide spin label, placed at the N-terminal end of the first β-strand of Het-s fibrils, is significantly reduced in both Het-s/GroEL aggregates and Het-s fibrils, but virtually completely eliminated in Het-s/GroEL fibrils, suggesting that in the latter, GroEL may come into close proximity to the nitroxide label. Solid-state NMR measurements indicate that GroEL binds to the mobile regions of the Het-s fibril comprising the N-terminal tail and a loop connecting β-strands 4 and 5, consistent with interactions involving GroEL binding consensus sequences located therein.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GroEL/ES Chaperonin Modulates the Mechanism and Accelerates the Rate of TIM-Barrel Domain Folding

The GroEL/ES chaperonin system functions as a protein folding cage. Many obligate substrates of GroEL share the (βα)8 TIM-barrel fold, but how the chaperonin promotes folding of these proteins is not known. Here, we analyzed the folding of DapA at peptide resolution using hydrogen/deuterium exchange and mass spectrometry. During spontaneous folding, all elements of the DapA TIM barrel acquire s...

متن کامل

Suppression of amyloid fibrils using the GroEL apical domain

In E. coli cells, rescue of non-native proteins and promotion of native state structure is assisted by the chaperonin GroEL. An important key to this activity lies in the structure of the apical domain of GroEL (GroEL-AD) (residue 191-376), which recognizes and binds non-native protein molecules through hydrophobic interactions. In this study, we investigated the effects of GroEL-AD on the aggr...

متن کامل

Probing the structure of the infectious amyloid form of the prion-forming domain of HET-s using high resolution hydrogen/deuterium exchange monitored by mass spectrometry.

The HET-s prion protein of Podospora anserina represents a valuable model system to study the structural basis of prion propagation. In this system, prion infectivity can be generated in vitro from a recombinant protein. We have previously identified the region of the HET-s protein involved in amyloid formation and prion propagation. Herein, we show that a recombinant peptide corresponding to t...

متن کامل

From conversion to aggregation: protofibril formation of the prion protein.

The ability to diagnose and treat prion diseases is limited by our current understanding of the conversion process of the protein from healthy to harmful isoform. Whereas the monomeric, benign species is well characterized, the misfolded conformations responsible for infectivity and neurodegeneration remain elusive. There is mounting evidence that fibrillization intermediates, or protofibrils, ...

متن کامل

Chaperonin GroEL/GroES Over-Expression Promotes Aminoglycoside Resistance and Reduces Drug Susceptibilities in Escherichia coli Following Exposure to Sublethal Aminoglycoside Doses

Antibiotic resistance is an increasing challenge to modern healthcare. Aminoglycoside antibiotics cause translation corruption and protein misfolding and aggregation in Escherichia coli. We previously showed that chaperonin GroEL/GroES depletion and over-expression sensitize and promote short-term tolerance, respectively, to this drug class. Here, we show that chaperonin GroEL/GroES over-expres...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 114 34  شماره 

صفحات  -

تاریخ انتشار 2017